In QUARREE100<quarree> an agent-based model was developed using GAMA. The model itself is called TREND model <https://www.github.com/quarree100/q100_abm> (and can be found on GitHub). It models the behavior transformation of citizens involved in the district’s heat transition.

Usually GAMA provides a user-friendly GUI with interactive variable input possibilities and graphical outputs, but from within our frontend, it is run in “headless mode” - the simulation is run “invisibly” in the background.

Installing GAMA

GAMA will be executed in a subprocess of the Q-Scope in simulation mode. It is recommended to install the Version with JDK.


We used GAMA 1.8.2 to develop the code; it might not necessarily work with different versions (we experienced some issues when switching between versions)!

Starting GAMA in headless mode

Instead of starting GAMA with its GUI (like in every usual execution), it can be run from the terminal like this: /path/to/gama-headless.sh /path/to/simulation.xml /path/to/output_folder.

The GAMA headless simulation takes an input xml file to initialize variables used in the model with desired values like below:

arbitrary values are taken from scenario_A.csv
 <Simulation experiment="agent_decision_making" sourcePath="/home/dunland/github/qScope/q100_abm_qscope-workshop/q100/models/qscope_ABM.gaml" finalStep="730" seed="1.0">
   <Parameter name="timestamp" type="STRING" value="20230509_14-22-50" var="timestamp"/>
   <Parameter name="Alpha scenario" type="STRING" value="Static_mean" var="alpha_scenario"/>
   <Parameter name="Carbon price scenario" type="STRING" value="B - Moderate" var="carbon_price_scenario"/>
   <Parameter name="Energy prices scenario" type="STRING" value="Prices_2021" var="energy_price_scenario"/>
   <Parameter name="Q100 OpEx prices scenario" type="STRING" value="12 ct / kWh (static)" var="q100_price_opex_scenario"/>
   <Parameter name="Q100 CapEx prices scenario" type="STRING" value="1 payment" var="q100_price_capex_scenario"/>
   <Parameter name="Q100 Emissions scenario" type="STRING" value="Constant_Zero_emissions" var="q100_emissions_scenario"/>
   <Parameter name="Carbon price for households?" type="BOOLEAN" value="false" var="carbon_price_on_off"/>
   <Output id="0" name="neighborhood" framerate="729" />
   <Output id="1" name="households_employment_pie" framerate="729" />
   <Output id="2" name="Charts" framerate="729" />
   <Output id="3" name="Modernization" framerate="729" />
   <Output id="4" name="Monthly Emissions" framerate="729" />
   <Output id="5" name="Emissions cumulative" framerate="729" />

The final shell command that is used in a subprocess of the frontend looks like this: /opt/gama-platform/headless/gama-headless.sh /home/USER/qScope/data/outputs/output_20230704_13-51-36/simulation_parameters_20230704_13-51-36.xml /home/USER/qScope/data/outputs/output_20230704_13-51-36

Both xml file and the command are created in the Q-Scope’s simulation mode. Another important file for the execution of the simulation is the buildings_clusters_YYYYmmdd_HH-MM-SS.csv file dropped to the simulation output folder (described below).









7.14 158.35729 29.34483 Strom False 2025 False 1

7.21 112.92122 14.60804 Gas 2025 False False 0

This information tells GAMA which buildings are selected have preset options should to be considered upon the start of the simulation.

Simulation Outputs

The simulation setup algorithm logs the simulation start time and defines the output path to export the results in the following manner:

  1. Each time the simulation is evoked by the frontend software, a new output folder is created: qScope/data/outputs/output_YYYYmmdd_HH_MM_SS


If multiple rounds are played during one workshop (as you would assume), you’ll end up with more than one output-folder. Just remember to consider all the outputs of the workshop for the evaluation of your data.

tree view of output folder
  project qScope
          |   └───connections
          |   └───emissions
          |   └───energy_prices
          |   └───snapshot
  • output_[timestamp]: contains simulation results of the specific game iteration round

  • connections contains connections_export.csv providing a list of the amount of agents connected to the heat grid (in percent and absolute)

  • in emissions, there are building-specific timelines with calculated CO2-emissions and graphs, depicting these lists, created in the frontend code.

  • energy_prices stores building-specific, caluclated energy prices as lists and graphs

  • snapshot is the place GAMA exports its native graphical output to.


When wanting to use and display gama-exported-images on infoscreen, try this:

should by implemented in simulation_mode.py right before starting the simulation via self.make_xml # compose image paths as required by infoscreen session.gama_iteration_images[session.environment[‘current_iteration_round’]] = [ str(os.path.normpath(‘data/outputs/output_{0}/snapshot/Chartsnull-{1}.png’.format( self.timestamp, str(self.final_step - 1)))), str(os.path.normpath(‘data/outputs/output_{0}/snapshot/Emissions cumulativenull-{1}.png’.format( self.timestamp, str(self.final_step - 1)))), str(os.path.normpath(‘data/outputs/output_{0}/snapshot/Monthly Emissionsnull-{1}.png’.format( self.timestamp, str(self.final_step - 1)))), str(os.path.normpath(‘data/outputs/output_{0}/snapshot/households_employment_pienull-{1}.png’.format( self.timestamp, str(self.final_step - 1)))), str(os.path.normpath(‘data/outputs/output_{0}/snapshot/Modernizationnull-{1}.png’.format( self.timestamp, str(self.final_step - 1)))), str(os.path.normpath(‘data/outputs/output_{0}/snapshot/neighborhoodnull-{1}.png’.format( self.timestamp, str(self.final_step - 1)))) ]
    # send final_step to infoscreen:
    session.api.send_dataframe_as_json(pandas.DataFrame(data={"final_step": [self.final_step]}))